Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6477, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081036

RESUMEN

The causative agent of white mold, Sclerotinia sclerotiorum, is capable of infecting over 600 plant species and is responsible for significant crop losses across the globe. Control is currently dependent on broad-spectrum chemical agents that can negatively impact the agroecological environment, presenting a need to develop alternative control measures. In this study, we developed transgenic Arabidopsis thaliana (AT1703) expressing hairpin (hp)RNA to silence S. sclerotiorum ABHYDROLASE-3 and slow infection through host induced gene silencing (HIGS). Leaf infection assays show reduced S. sclerotiorum lesion size, fungal load, and ABHYDROLASE-3 transcript abundance in AT1703 compared to wild-type Col-0. To better understand how HIGS influences host-pathogen interactions, we performed global RNA sequencing on AT1703 and wild-type Col-0 directly at the site of S. sclerotiorum infection. RNA sequencing data reveals enrichment of the salicylic acid (SA)-mediated systemic acquired resistance (SAR) pathway, as well as transcription factors predicted to regulate plant immunity. Using RT-qPCR, we identified predicted interacting partners of ABHYDROLASE-3 in the polyamine synthesis pathway of S. sclerotiorum that demonstrate co-reduction with ABHYDROLASE-3 transcript levels during infection. Together, these results demonstrate the utility of HIGS technology in slowing S. sclerotiorum infection and provide insight into the role of ABHYDROLASE-3 in the A. thaliana-S. sclerotiorum pathosystem.


Asunto(s)
Arabidopsis , Ascomicetos , Interferencia de ARN , ARN de Planta/metabolismo , Ascomicetos/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
PLoS One ; 17(8): e0261102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36018839

RESUMEN

Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of crop species, causing extensive yield loss every year. Chemical fungicides are used to control this phytopathogen, but with concerns about increasing resistance and impacts on non-target species, there is a need to develop alternative control measures. In the present study, we engineered Brassica napus to constitutively express a hairpin (hp)RNA molecule to silence ABHYRDOLASE-3 in S. sclerotiorum. We demonstrate the potential for Host Induced Gene Silencing (HIGS) to protect B. napus from S. sclerotiorum using leaf, stem and whole plant infection assays. The interaction between the transgenic host plant and invading pathogen was further characterized at the molecular level using dual-RNA sequencing and at the anatomical level through microscopy to understand the processes and possible mechanisms leading to increased tolerance to this damaging necrotroph. We observed significant shifts in the expression of genes relating to plant defense as well as cellular differences in the form of structural barriers around the site of infection in the HIGS-protected plants. Our results provide proof-of-concept that HIGS is an effective means of limiting damage caused by S. sclerotiorum to the plant and demonstrates the utility of this biotechnology in the development of resistance against fungal pathogens.


Asunto(s)
Brassica napus , Ascomicetos , Resistencia a la Enfermedad , Silenciador del Gen , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Índice de Severidad de la Enfermedad
3.
J Exp Bot ; 73(19): 6697-6710, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961003

RESUMEN

White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.


Asunto(s)
Arabidopsis , Brassica napus , Brassica napus/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad de la Planta/genética
4.
Plants (Basel) ; 9(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339102

RESUMEN

Efforts to develop more environmentally friendly alternatives to traditional broad-spectrum pesticides in agriculture have recently turned to RNA interference (RNAi) technology. With the built-in, sequence-specific knockdown of gene targets following delivery of double-stranded RNA (dsRNA), RNAi offers the promise of controlling pests and pathogens without adversely affecting non-target species. Significant advances in the efficacy of this technology have been observed in a wide range of species, including many insect pests and fungal pathogens. Two different dsRNA application methods are being developed. First, host induced gene silencing (HIGS) harnesses dsRNA production through the thoughtful and precise engineering of transgenic plants and second, spray induced gene silencing (SIGS) that uses surface applications of a topically applied dsRNA molecule. Regardless of the dsRNA delivery method, one aspect that is critical to the success of RNAi is the ability of the target organism to internalize the dsRNA and take advantage of the host RNAi cellular machinery. The efficiency of dsRNA uptake mechanisms varies across species, and in some uptake is negligible, rendering them effectively resistant to this new generation of control technologies. If RNAi-based methods of control are to be used widely, it is critically important to understand the mechanisms underpinning dsRNA uptake. Understanding dsRNA uptake mechanisms will also provide insight into the design and formulation of dsRNAs for improved delivery and provide clues into the development of potential host resistance to these technologies.

5.
Insect Biochem Mol Biol ; 127: 103492, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096213

RESUMEN

RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.


Asunto(s)
Aedes/genética , Clatrina/metabolismo , Endocitosis , Proteínas de Insectos/metabolismo , Interferencia de ARN , ARN Bicatenario/genética , Aedes/metabolismo , Animales , Genes de Insecto , ARN Bicatenario/metabolismo
6.
Sci Rep ; 10(1): 12773, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728195

RESUMEN

RNA interference (RNAi) technologies have recently been developed to control a growing number of agronomically significant fungal phytopathogens, including the white mold pathogen, Sclerotinia sclerotiorum. Exposure of this fungus to exogenous double-stranded RNA (dsRNA) results in potent RNAi-mediated knockdown of target genes' transcripts, but it is unclear how the dsRNA can enter the fungal cells. In nematodes, specialized dsRNA transport proteins such as SID-1 facilitate dsRNA uptake, but for many other eukaryotes in which the dsRNA uptake mechanisms have been examined, endocytosis appears to mediate the uptake process. In this study, using live cell imaging, transgenic fungal cultures and endocytic inhibitors, we determined that the uptake mechanism in S. sclerotiorum occurs through clathrin-mediated endocytosis. RNAi-mediated knockdown of several clathrin-mediated endocytic genes' transcripts confirmed the involvement of this cellular uptake process in facilitating RNAi in this fungus. Understanding the mode of dsRNA entry into the fungus will prove useful in designing and optimizing future dsRNA-based control methods and in anticipating possible mechanisms by which phytopathogens may develop resistance to this novel category of fungicides.


Asunto(s)
Ascomicetos/metabolismo , Clatrina/química , Endocitosis , Interferencia de ARN , ARN Bicatenario/química , Animales , Transporte Biológico , Células CHO , Cricetulus , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Transgenes
7.
Insects ; 11(6)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471283

RESUMEN

RNA interference (RNAi) techniques are being developed for a range of pest insect control technologies, including the sterile insect technique (SIT) and double-stranded RNA (dsRNA)-based insecticides. In SIT applications, where >99% of the released males should be sterile to meet industry standards, the efficiency of RNAi will need to be improved for many insect species if this technology is to be adopted. Endogenous dsRNases can impede dsRNA delivery in some insects, and, here, we investigated whether dsRNases in the midgut could limit RNAi efficacy in the mosquito Aedes aegypti. Ten putative dsRNases were identified in the Ae. aegypti genome, with two highly expressed in the midguts of larvae. Using an ex vivo assay, we observed that dsRNA was rapidly degraded within the mosquito larva's gut. Double-stranded RNA targeting these two dsRNases, when fed to the larvae, effectively reduced gut dsRNase activity. When these dsRNase-specific dsRNAs were co-delivered with dsRNA targeting a cyan fluorescent protein (CFP) reporter gene, greater knockdown of CFP fluorescence was observed. These results suggest that inhibiting dsRNase activity could enable the implementation of RNAi-based mosquito control methods.

8.
Front Plant Sci ; 11: 451, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373146

RESUMEN

Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this review also addresses a number of physiological and cellular barriers, which can lead to decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies, such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-like particles, are also discussed, as these could overcome these barriers and lead to effective RNAi-based pest control.

9.
Open Biol ; 9(12): 190198, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31795920

RESUMEN

RNA interference (RNAi) in insects is routinely used to ascertain gene function, but also has potential as a technology to control pest species. For some insects, such as beetles, ingestion of small quantities of double-stranded RNA (dsRNA) is able to knock down a targeted gene's expression. However, in other species, ingestion of dsRNA can be ineffective owing to the presence of nucleases within the gut, which degrade dsRNA before it reaches target cells. In this study, we observed that nucleases within the gut of the Queensland fruit fly (Bactrocera tryoni) rapidly degrade dsRNA and reduce RNAi efficacy. By complexing dsRNA with liposomes within the adult insect's diet, RNAi-mediated knockdown of a melanin synthesis gene, yellow, was improved significantly, resulting in strong RNAi phenotypes. RNAi efficiency was also enhanced by feeding both larvae and adults for several days on dsRNAs that targeted two different dsRNase gene transcripts. Co-delivery of both dsRNase-specific dsRNAs and yellow dsRNA resulted in almost complete knockdown of the yellow transcripts. These findings show that the use of liposomes or co-feeding of nuclease-specific dsRNAs significantly improves RNAi inhibition of gene expression in B. tryoni and could be a useful strategy to improve RNAi-based control in other insect species.


Asunto(s)
Drosophila/genética , Técnicas de Silenciamiento del Gen , Interferencia de ARN , ARN Bicatenario , Ribonucleasas/genética , Animales , Drosophila/clasificación , Drosophila/enzimología , Activación Enzimática , Femenino , Expresión Génica , Genoma de los Insectos , Liposomas , Masculino , Filogenia , Ribonucleasas/metabolismo
10.
Trends Parasitol ; 35(8): 649-662, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31255488

RESUMEN

In the pursuit of better pest- and vector-control strategies, attention returns to an old proven technology, the sterile insect technique (SIT) and related insect population-suppression methods. A major obstacle for any of these approaches that involves the release of sterile males is the separation of males from females during the mass rearing stage, in order to improve the cost-efficiency of these methods and to prevent the release of biting and disease-vectoring females. This review describes recent sex-sorting developments in dipteran flies with an emphasis on assessing the suitability of these methods for large-scale rearing of male vectors for mass release.


Asunto(s)
Dípteros , Entomología/métodos , Control de Insectos/métodos , Insectos Vectores/fisiología , Animales , Entomología/tendencias , Femenino , Infertilidad Masculina , Masculino , Factores Sexuales
11.
Insects ; 9(3)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103378

RESUMEN

The Queensland fruit fly, Bactrocera tryoni, is Australia's most important horticultural pest. The Sterile Insect Technique (SIT) has been used to control this species for decades, using radiation to sterilize males before field-release. This method of sterilization can potentially reduce the insects' abilities to compete for mates. In this study, RNA interference (RNAi) techniques were examined for their potential to sterilize male B. tryoni without adversely affecting mating competitiveness. B. tryoni adults were injected or fed double-stranded RNAs (dsRNAs) targeting spermatogenesis genes (tssk1, topi and trxt); quantitative reverse-transcriptase PCR analyses confirmed that transcript levels were reduced 60⁻80% for all three genes following injections. Feeding produced a significant gene knockdown for tssk1 and trxt after three days, but interestingly, two genes (trxt and topi) produced an excess of transcripts after 10 days of feeding. Despite these fluctuations in transcript levels, all three dsRNAs impacted the fecundity of treated males, with tssk1- and topi-dsRNA-treated males producing 75% fewer viable offspring than the negative controls. Mating competition assays demonstrated that dsRNA-treated males can actively compete with untreated males. These findings suggest that RNAi technology could serve as an alternative to radiation as a means of sterilizing these insects in an SIT program.

12.
Sci Rep ; 8(1): 7320, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743510

RESUMEN

Sclerotinia sclerotiorum, the causal agent of white stem rot, is responsible for significant losses in crop yields around the globe. While our understanding of S. sclerotiorum infection is becoming clearer, genetic control of the pathogen has been elusive and effective control of pathogen colonization using traditional broad-spectrum agro-chemical protocols are less effective than desired. In the current study, we developed species-specific RNA interference-based control treatments capable of reducing fungal infection. Development of a target identification pipeline using global RNA sequencing data for selection and application of double stranded RNA (dsRNA) molecules identified single gene targets of the fungus. Using this approach, we demonstrate the utility of this technology through foliar applications of dsRNAs to the leaf surface that significantly decreased fungal infection and S. sclerotiorum disease symptoms. Select target gene homologs were also tested in the closely related species, Botrytis cinerea, reducing lesion size and providing compelling evidence of the adaptability and flexibility of this technology in protecting plants against devastating fungal pathogens.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Botrytis/genética , Botrytis/fisiología , Brassica napus/microbiología , ARN Bicatenario/genética , Brassica napus/fisiología , Ontología de Genes , Interferencia de ARN , Homología de Secuencia de Ácido Nucleico
13.
Genome Biol Evol ; 8(12): 3794-3805, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082599

RESUMEN

Transposable elements (TEs) have been recognized as potentially powerful drivers of genomic evolutionary change, but factors affecting their mobility and regulation remain poorly understood. Chaperones such as Hsp90 buffer environmental perturbations by regulating protein conformation, but are also part of the PIWI-interacting RNA pathway, which regulates genomic instability arising from mobile TEs in the germline. Stress-induced mutagenesis from TE movement could thus arise from functional trade-offs in the dual roles of Hsp90. We examined the functional constraints of Hsp90 and its role as a regulator of TE mobility by exposing nematodes (Caenorhabditis elegans and Caenorhabditis briggsae) to environmental stress, with and without RNAi-induced silencing of Hsp90. TE excision frequency increased with environmental stress intensity at multiple loci in several strains of each species. These effects were compounded by RNAi-induced knockdown of Hsp90. Mutation frequencies at the unc-22 marker gene in the offspring of animals exposed to environmental stress and Hsp90 RNAi mirrored excision frequency in response to these treatments. Our results support a role for Hsp90 in the suppression of TE mobility, and demonstrate that that the Hsp90 regulatory pathway can be overwhelmed with moderate environmental stress. By compromising genomic stability in germline cells, environmentally induced mutations arising from TE mobility and insertion can have permanent and heritable effects on both the phenotype and the genotype of subsequent generations.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Proteínas HSP90 de Choque Térmico/genética , ARN Interferente Pequeño/genética , Estrés Fisiológico/genética , Animales , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/genética , Células Germinativas , Mutación , Transducción de Señal , Transcripción Genética
14.
Parasit Vectors ; 8: 96, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25880645

RESUMEN

BACKGROUND: Mosquito-borne diseases threaten over half the world's human population, making the need for environmentally-safe mosquito population control tools critical. The sterile insect technique (SIT) is a biological control method that can reduce pest insect populations by releasing a large number of sterile males to compete with wild males for female mates to reduce the number of progeny produced. Typically, males are sterilized using radiation, but such methods can reduce their mating competitiveness. The method is also most effective if only males are produced, but this requires the development of effective sex-sorting methods. Recent efforts to use transgenic methods to produce sterile male mosquitoes have increased interest in using SIT to control some of our most serious disease vectors, but the release of genetically modified mosquitoes will undoubtedly encounter considerable delays as regulatory agencies deal with safety issues and public concerns. METHODS: Testis genes in the dengue vector Aedes aegypti were identified using a suppression subtractive hybridization technique. Mosquito larvae were fed double-stranded RNAs (dsRNAs) that targeted both the testis genes and a female sex determination gene (doublesex) to induce RNA interference (RNAi) -mediated sterility and inhibition of female development. Fertility and mating competiveness of the treated males were assessed in small-scale mating competition experiments. RESULTS: Feeding mosquito larvae dsRNAs targeting testis genes produced adult males with greatly reduced fertility; several dsRNAs produced males that were highly effective in competing for mates. RNAi-mediated knockdown of the female-specific isoform of doublesex was also effective in producing a highly male-biased population of mosquitoes, thereby overcoming the need to sex-sort insects before release. CONCLUSIONS: The sequence-specific gene-silencing mechanism of this RNAi technology renders it adaptable for species-specific application across numerous insect species. We envisage its use for traditional large-scale reared releases of mosquitoes and other pest insects, although the technology might also have potential for field-based control of mosquitoes where eggs deposited into a spiked larval site lead to the release of new sterile males.


Asunto(s)
Aedes/genética , Silenciador del Gen , Insectos Vectores/genética , Larva/genética , ARN Bicatenario/genética , Aedes/fisiología , Animales , Conducta Alimentaria , Femenino , Insectos Vectores/fisiología , Larva/fisiología , Masculino , Control Biológico de Vectores , ARN Bicatenario/metabolismo , Reproducción
16.
Bioscience ; 65(11): 1046-1056, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26951616

RESUMEN

Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...